![]() |
Course: CIS256DA First Term: 2022 Spring
Final Term: Current
Final Term: 9999
|
Lec + Lab 3.0 Credit(s) 4.0 Period(s) 4.0 Load
Credit(s) Period(s)
Load
Subject Type: OccupationalLoad Formula: T- Lab Load |
MCCCD Official Course Competencies | |||
---|---|---|---|
1. Utilize Python array libraries for performing element-wise computations with arrays or mathematical operations between arrays. (I)
2. Use Python libraries and tools to extract, transform, and load datasets. (II) 3. Create meaningful data visualizations using Python visualization libraries. (III) 4. Analyze and manipulate time series data. (IV) 5. Examine various data modeling algorithms. (V) 6. Determine the best modeling algorithm to be used within machine learning. (V) 7. Apply supervised and unsupervised machine learning algorithms to perform classification, regression, and clustering. (V, VI) | |||
MCCCD Official Course Outline | |||
I. Working with NumPy
A. NumPy basics 1. Array indexing 2. Array selection 3. ndarray B. NumPy operations 1. Array with array 2. Array with scalars 3. Universal array functions II. Working with datasets A. Development environments B. Pandas 1. Series 2. Data frames a. Filtering b. Sorting c. Ranking d. Data extraction e. Multi-indexing f. GroupBy object C. Data loading and storing 1. Text files 2. JSON data 3. XML and HTML 4. csv and Excel files 5. Data from databases D. Data cleaning and preparation 1. Handling missing data 2. Data transformation 3. String manipulation E. Data wrangling 1. Hierarchical indexing 2. Combining and merging datasets 3. Reshaping and pivoting III. Visualizing data A. Matplotlib 1. Figures and subplots 2. Colors, markers, and line styles 3. Ticks, labels, and legends 4. Saving plots to file B. Seaborn 1. Distribution plots 2. Categorical plots 3. Matrix plots 4. Regression plots C. Other Python visualization libraries IV. Time series data A. Date and time data types and tools B. Date ranges, frequencies, and shifting C. Time zone handling D. Periods and period arithmetic V. Algorithms A. Classification B. Regression C. Clustering VI. Machine learning A. scikit-learn B. Supervised learning 1. K-Nearest neighbor 2. Logistic regression 3. Linear regression 4. Decision trees and random forests 5. Naïve Bayes and Support Vector Machine (SVM) 6. Performance evaluation of models C. Unsupervised learning 1. K-means 2. Performance evaluation of model | |||
MCCCD Governing Board Approval Date: September 28, 2021 |