powered by
Center for Curriculum and Transfer Articulation
Sonographic Principles and Instrumentation I
Course: DMS150

First Term: 2021 Spring
Lecture   3.0 Credit(s)   3.0 Period(s)   3.0 Load  
Subject Type: Occupational
Load Formula: S - Standard Load


Description: Sonographic principles and instrumentation necessary for the performance of diagnostic sonographic imaging and vascular examinations. Quality control materials and procedures. Biological effects of ultrasound energy.



MCCCD Official Course Competencies
1. Describe sound waves, propagation of ultrasound through tissue, reflection, refraction, and scattering. (I, II, IV)
2. Explain transducer technology, and discuss the advantages and limitations of the various types. (III)
3. Describe the role of advanced scanning features, including harmonics, coded excitation, and compounding. (IV)
4. Describe the function of the major components of the ultrasound system. (IV, V)
5. Explain how pulsed Doppler, color flow imaging, and amplitude imaging is achieved. (VI, VII)
6. Recognize and describe image artifacts and techniques to minimize or eliminate them. (VIII)
7. Describe the importance of performance, safety, and output measurements and standards. (IX)
MCCCD Official Course Competencies must be coordinated with the content outline so that each major point in the outline serves one or more competencies. MCCCD faculty retains authority in determining the pedagogical approach, methodology, content sequencing, and assessment metrics for student work. Please see individual course syllabi for additional information, including specific course requirements.
 
MCCCD Official Course Outline
I. Basic principles and wave analysis
   A. General principles
      1. Scientific notation
      2. Metric notation
      3. Common units
         a. Time - sec
         b. Power - watts
         c. Work - joule
         d. Acoustic impedance - rayls
      4. Measurement dimensions
         a. Distance
            (1) Linear
            (2) Circumference
         b. Area
         c. Volume
   B. Nature of sound
      1. Definition of sound
         a. Wave classifications
            (1) Electromagnetic
            (2) Mechanical
               (a) Longitudinal
               (b) Transverse
         b. Wave anatomy
            (1) Cycle
               (a) Phase
               (b) Frequency
               (c) Period
               (d) Wavelength
            (2) Compression
            (3) Rarefaction
            (4) Nodes/antinodes
      2. Acoustic spectrum
         a. Infrasound
         b. Audible sound
         c. Ultrasound
      3. Sound wave interaction/interference
         a. Huygen`s principle
         b. Constructive
         c. Destructive
         d. Beat frequency
      4. Types of waves
         a. Continuous wave
         b. Pulse wave characteristics, units, and ranges
            (1) Pulse repetition frequency
            (2) Pulse repetition period
            (3) Pulse duration
            (4) Spatial pulse length
            (5) Duty factor
   C. Wave characteristics
      1. Definition of terms
         a. Propagation speed
         b. Frequency
            (1) Typical ranges
            (2) Penetration
         c. Wavelength
         d. Acoustic impedance
      2. Relationship between terms
      3. Common units of terms
      4. Acoustic variable
         a. Density
         b. Pressure
         c. Temperature
         d. Particle motion
   D. Properties of acoustic waves
      1. Amplitude
      2. Pressure
      3. Power
      4. Intensity
   E. Decibels
      1. Definition
         a. Related to intensity
         b. Related to amplitude
      2. Examples corresponding to half value layers
II. Propagation of acoustic waves through tissues
   A. Speed of sound
      1. Average speed in tissues
      2. Range of propagation speeds in the body
         a. Air
         b. Water
         c. Muscle
         d. Fat
         e. Various parenchyma
         f. Bone
         g. Average for soft tissue
      3. Media properties
         a. Elasticity
         b. Density
         c. Compressibility/bulk modulus
         d. Relationship between properties
   B. Reflection
      1. Definition of reflection
      2. Specular reflector and highlights
         a. Interface size and contour
         b. Dependence on angle
         c. Dependence on acoustic impedance mismatch
            (1) Definition of acoustic impedance
            (2) Common units
            (3) Determine ease of reflection versus transmission
      3. Scatter
         a. Definition of scattering
         b. Frequency dependence
         c. Interface contour
         d. Contrast media
   C. Refraction
      1. Definition of refraction
      2. Snell`s Law
   D. Attenuation
      1. Definition of attenuation
      2. Sources of attenuation
         a. Reflection/scattering
         b. Refraction
         c. Interference
         d. Diffusion
         e. Absorption
      3. Dependence on frequency
      4. Typical values in soft tissue
      5. Relationship between coefficient, depth, frequency
      6. Effects on images
         a. Frequency versus spatial resolution
         b. Penetration versus spatial resolution
   E. Harmonics
      1. Tissue harmonics versus contrast harmonics
      2. Generation of odd or even multiples of original frequency wave
      3. Effect of high pressure area on sound wave
      4. System requirements
         a. Wide dynamic range
         b. Transmitter
         c. Bandwidth/passband limitations
      5. Advantages and limitations
      6. Clinical applications
III. Sonographic transducers and sound beams
   A. Piezoelectric properties
      1. Definition of piezoelectric effect
      2. Curie point
      3. Dipole alignment process
      4. Piezoelectric materials
   B. Transducer construction and characteristics
      1. Transducer housing
         a. Protective
         b. Orientation
         c. Care
      2. Backing material
         a. Insulation
         b. Damping
            (1) Relationship of damping, pulse length, axial resolution, sensitivity
            (2) Passive versus dynamic damping
      3. Matching layer
         a. Purpose of matching layer
         b. Relationship to wavelength, pulse length, sensitivity
      4. Crystal/element
         a. Resonant, operating versus nominal frequency
         b. Dependence of crystal thickness to resonance frequency
         c. Frequency characteristics
            (1) Bandwidth
            (2) Narrow versus broad bandwidth
            (3) Effect of damping
            (4) Q factor
   C. Sound beam formation and beam shape
      1. Definition of near field/Fresnel zone
         a. Length of near field
         b. Relationship to transducer frequency and crystal diameter
         c. Shape of near field
            (1) Beam width
            (2) Natural focus
      2. Definition of far field/Fraunhofer zone
      3. Shape of far field
      4. Relationship to transducer frequency and crystal diameter
      5. Focused beam
         a. Definitions
            (1) Focal plane
            (2) Local point
            (3) Focal distance
            (4) Focal zone
            (5) Maximum versus minimal areas of beam intensity
         b. Method of focusing
            (1) Single element/mechanical transducers
            (2) Multi-element/dynamic transducers
         c. Clinical uses with variable focuses
         d. Interference phenomena
            (1) Huygen`s Principle
            (2) Diffraction (divergence)
            (3) Bandwidth
      4. Pressure profiles
         a. Identify axial, transverse, and polar pressure profiles
         b. Relationship between bandwidth and each profile
         c. Axial profile labeling
            (1) Pressure axis
            (2) Central beam axis
            (3) Near field
            (4) Far field
            (5) Application to assess near field and far field fluctuations
         d. Transverse profile labeling
            (1) Pressure axis
            (2) Beam width axis
            (3) Distance from transducer axis
            (4) Application to provide beam diameter information
         e. Polar profile labeling
            (1) Pressure axis
            (2) Angle theta
            (3) Main lobe
            (4) Side lobe
            (5) Application to provide information about energies outside of main beam
   D. Axial resolution
      1. Dependence on spatial pulse length/pulse duration, damping, bandwidth
      2. Relationship to transducer frequency
      3. Numerical example
   E. Lateral resolution
      1. Dependence on beam width
      2. Dependence on transducer frequency
      3. Dependence on transducer size
      4. Dependence on focal length
   F. Relationship from transducer face
   G. Slice thickness or elevational resolution
      1. Dependence on beam width, focal characteristics, and frequency
      2. Relationship to lateral and axial resolution
   H. Transducer types
      1. Mechanical construction/operation
         a. Contact
         b. Liquid-path
      2. Multiple element construction
         a. Linear array
         b. Curved array
         c. Annular array
         d. Multi-dimensional array
      3. Electronic operation
         a. Sequenced
         b. Phased/simultaneous
         c. Annular/hybrid
         d. Multi-dimensional
         e. Beam steering
            (1) Transmission time delays
            (2) Reception time delays
         f. Beam focusing
            (1) Time delays
            (2) Dynamic aperture
         g. Firing variations
            (1) Apodization
            (2) Subdicing
      4. Emerging technologies
   I. Transducer care and maintenance
      1. Effects of alcohol, autoclave, and physical damage
      2. Proper cleansing routine
IV. Principles of pulse echo imaging
   A. A-mode
      1. Information displayed on image
         a. Amplitude
         b. Depth
         c. Time
      2. Advantages and disadvantages
      3. Clinical applications
   B. M-mode
      1. Information displayed on image
         a. Amplitude
         b. Depth
         c. Time
      2. Advantages and disadvantages
      3. Clinical applications
   C. B-mode
      1. Information displayed on image
         a. Amplitude
         b. Depth
      2. Advantages and disadvantages
      3. Clinical applications
   D. Volumetric scanning modes
      1. Definition of voxel
      2. Information displayed on image
      3. Orthogonal planes
      4. Advantages and disadvantages
      5. Clinical applications
   E. Scanning speed limitations
      1. Definition of range equation
      2. Real-time systems - relationships between
         a. Pulse repetition frequency
         b. Frame rate
         c. Number of lines per frame
         d. Number of focal regions
         e. Field of view or sector angle
         f. Image depth/penetration
         g. Spatial resolution
         h. Temporal resolution
   F. System controls
      1. Purpose and definition
         a. Freeze
         b. Print
         c. Depth/field of view (FOV)
         d. Focus
         e. Overall gain
         f. Time gain compensation (TGC)
         g. Transducer frequency selection
         h. Examination presets
         i. Calipers
      2. Information displayed on image
         a. Amplitude
         b. Depth
         c. Time
      3. Clinical applications
   G. Time-gain compensation M-mode
      1. Information displayed on image
         a. Amplitude
         b. Depth
         c. Time
      2. Advantages and disadvantages
      3. Clinical applications
   H. B-mode
      1. Information displayed on image
         a. Amplitude
         b. Depth
      2. Advantages and disadvantages
      3. Clinical applications
   I. Volumetric scanning modes
      1. Definition of voxel
      2. Information displayed on image
      3. Orthogonal planes
      4. Advantages and disadvantages
      5. Clinical applications
   J. Scanning speed limitations
      1. Definition of range equation
      2. Real-time systems - relationships between
         a. Pulse repetition frequency
         b. Frame rate
         c. Number of lines per frame
         d. Number of focal regions
         e. Field of view or sector angle
         f. Image depth/penetration
         g. Spatial resolution
         h. Temporal resolution
   K. System controls - purpose and definition
      1. Freeze
      2. Print
      3. Depth/field of view (FOV)
      4. Focus
      5. Overall gain
      6. Time gain compensation (TGC)
      7. Transducer frequency selection
      8. Examination presets
      9. Calipers
      10. Power/mechanical index (MI)/thermal indices (TI)
      11. Cine loop
      12. Harmonics
      13. Compound imaging
      14. Extended field of view
      15. Scan modes
      16. Emerging technologies
V. Sonographic instrumentation
   A. System components
      1. Beam former
      2. Signal processor
      3. Image processor
   B. Timer - range equation
   C. Transmitter/pulse generator
      1. Effects of transmitter voltage
      2. Effects on penetration, intensity, and patient exposure
   D. Receiver
      1. Amplification
         a. Controlled by overall gain knob
         b. Effect on returning signal and image
      2. Compensation
         a. Depth attenuation
         b. Controlled by TGC
         c. Effect on return signal and image
      3. Compression
         a. Definition of dynamic range
         b. Ranges associated with system components
         c. Typical units
      4. Demodulation
         a. Rectification
            (1) Half-wave
            (2) Full-wave
         b. Smoothing/enveloping
      5. Rejection
         a. Signal to noise ratio
         b. System control for rejection
   E. Image storage devices
      1. Role of scan converter
         a. Image storage
         b. Scan conversion
      2. Digital devices
         a. Binary system
            (1) Bits, bytes, words, pixels
            (2) Nature of binary numbers
         b. Steps in processing echo information
            (1) Analog-to-digital converter
               (a) Types of sampling
               (b) Effects of sampling frequency
            (2) Preprocessing
            (3) Digital memory
               (a) Spatial resolution
               (b) Contrast resolution
               (c) Post processing
               (d) Digital-to-analog converter
               (e) Display devices
   F. Imaging processing
      1. Preprocessing functions
         a. Time gain compensation
         b. Logarithmic compression curves
         c. Write magnification
         d. Panning
         e. Other
      2. Post-processing functions
         a. Freeze frame
         b. Black/white inversion
         c. Read magnification
         d. Contrast variation curves
         e. B-color
         f. Other
      3. Manufacturer dependent functions
         a. Persistence
         b. Frame averaging
         c. Edge enhancement
         d. Smoothing
         e. Interpolation
         f. Emerging technologies
         g. Other
   G. Scanning speed limitations
      1. Range equation
      2. Real-time system relationships
         a. Pulse repetition frequency
         b. Frame rate
         c. Number of lines per frame
         d. Number of focal regions
         e. Field of view or sector angle
         f. Image depth/penetration
         g. Spatial resolution
         h. Temporal resolution
   H. Display devices
   I. Recording and archiving devices
      1. Analog format
         a. Display
         b. Single, multi-image, or laser cameras
            (1) Photographic film
            (2) Emulsion film
         c. Recorders
         d. Printer
            (1) Thermal
            (2) Laser
      2. Digital format
         a. Digital media
         b. Picture archiving and communication systems (PACS)
         c. Digital imaging and communications in medicine (DICOM)
         d. Industry standards
VI. Hemodynamic and Doppler imaging
   A. Hemodynamics
      1. Factors that influence blood flow
         a. Cardiac function
         b. Compliance
         c. Muscle tone
         d. Vessel branching patterns and dimensions
         e. Luminal vessel diameter
      2. Pressure gradient
         a. Relationship between heart stroke volume, heart rate, blood volume
         b. Dependence on flow and resistance
         c. Effect of peripheral resistance
         d. Sources of resistance
      3. Hemodynamic resistance
         a. Blood viscosity
         b. Friction
         c. Inertia
      4. Poiseuille`s Law
         a. Relationship between pressure, flow volume, and resistance
         b. Effect of vessel radius to velocity and flow volume
         c. Effects of temperature, exercise, and pharmacologics
         d. Effects specific to various systems
      5. Bernoulli`s equation - relationship between velocity and pressure
      6. Flow patterns
         a. Steady flow
         b. Pulsatile flow
         c. High resistance
         d. Low resistance
         e. Laminar
         f. Turbulent flow
            (1) Reynolds number
            (2) Bruit
         g. Effects of stenosis on flow characteristics
         h. Effects of peripheral resistance
      7. Venous resistance
         a. Hydrostatic pressure
         b. Effects of respiration
         c. Muscle pump
         d. Gravitational pressure
         e. Incompetency
         f. Fistula formation
         g. Pressure versus volume effects
   B. Doppler physical principles
      1. Doppler effect
         a. Principle as related to sampling red blood cell movement
         b. Doppler equation
      2. Factors influencing the magnitude of the Doppler shift frequency
         a. Range of the Doppler shift frequency
         b. Effects of beam angle, transmitted frequency
         c. Relationship between frequency shift and flow velocity, flow direction
         d. Relationship between blood pressure and blood volume
   C. Doppler instruments
      1. Definition of continuous wave
         a. Range ambiguity
         b. Spectral appearance
         c. Advantages and disadvantages
      2. Definition of pulsed-wave Doppler
         a. Range resolution
         b. Nyquist limit
         c. Advantages and disadvantages
      3. Duplex instruments
         a. Definition
         b. Basic principles
         c. Instrumentation
            (1) Receiver
            (2) Demodulator
            (3) Quadrature phase detector
            (4) Wall filter
            (5) Directional knobs
      4. Spectral analysis
         a. Appearance on the spectral display
            (1) Flow direction
            (2) Flow velocity
            (3) Velocity profiles
               (a) Plug
               (b) Turbulent
               (c) Laminar
         b. Waveform magnitude or brightness
         c. Fast Fourier transform (FFT)
         d. Qualitative versus quantitative evaluation
   D. Color flow imaging
      1. Sampling methods
         a. PW Doppler
         b. RBC sampling
         c. Tissue sampling
      2. Display of Doppler information
         a. Flow direction
         b. Average velocity
         c. Velocity maps
         d. Angle dependence
      3. Advantages and disadvantages
      4. Instrumentation
         a. Autocorrelation
            (1) Time domain processing
            (2) Dwell time
            (3) Color sensitivity
         b. Relationship between color box size and frame rate
            (1) Ensemble length/packet size/pulse packet
            (2) Line density
            (3) Depth of penetration
         c. Color maps
            (1) Hue
            (2) Saturation
            (3) Brightness/luminance/intensity
   E. Color power/energy mode
      1. Displayed information - formats
         a. Flow direction
         b. Displayed velocity
         c. Velocity maps
         d. Angle independence
      2. Advantages and disadvantages
VII. Artifacts
   A. Definition
   B. Assumptions of sonographic beams and instruments
   C. Performance and interpretation recognition
      1. Appearance on display
         a. Display of non-structural echo signals
         b. Missing real structural echo signals
         c. Displacement of echo signals on display
         d. Distortion of echo signal
      2. Definition of each artifact
      3. Mechanisms of production
   C. Resolution and propagation association
      1. Axial resolution
      2. Lateral resolution
      3. Slice thickness/beam width artifact
      4. Acoustic speckle
      5. Temporal resolution
   D. Propagation
      1. Reverberation
         a. Comet-tail
         b. Ring-down
      2. Mirror image
      3. Duplication
      4. Side lobes or grating lobes
      5. Velocity error
      6. Refraction
      7. Edge shadowing
      8. Range ambiguity
      9. Multipath
   E. Attenuation
      1. Shadowing
      2. Enhancement
      3. Focal enhancement or focal banding
   F. Miscellaneous
      1. Dead zone/near field artifact/main bang
      2. Excessive gain or TGC
      3. Excessive reject
      4. Electrical noise
   G. Doppler and color flow
      1. Aliasing
      2. Mirror imaging or ghosting
      3. Color registration
         a. Ghosting or flash
         b. Bleed
         c. Noise
      4. Incident beam angle
      5. Clutter
      6. Slice thickness
      7. Reverberation
   H. Volumetric imaging
VIII. Quality assurance/quality control of sonographic instruments
   A. Program
      1. Purpose
      2. Frequency
      3. Documentation
   B. Evaluation of instrument performance
      1. Test objects
      2. Various tissue equivalent phantoms
   C. Parameters
      1. Test object
         a. Dead zone
         b. Axial resolution
         c. Lateral resolution
         d. Range accuracy
            (1) Vertical depth calibration
            (2) Horizontal calibration
         e. TGC characteristics
         f. Uniformity
         g. System sensitivity
      2. Tissue equivalent phantom
         a. Dead zone
         b. Range accuracy
            (1) Vertical depth calibration
            (2) Horizontal calibration
         c. Detail resolution
            (1) Axial resolution
            (2) Lateral resolution
            (3) Slice thickness/elevational resolution
         d. TGC characteristics
         e. System sensitivity
         f. Contrast resolution
         g. Dynamic range
         h. Image congruency test
      3. Doppler phantoms
         a. Maximum depth
         b. Pulsed Doppler sample volume accuracy
         c. Velocity accuracy
         d. Color flow sensitivity
         e. Image congruency test
   D. Statistical indices
      1. Chi square
      2. Sensitivity/specificity
      3. Negative/positive predictive value; prevalence of disease
      4. Accuracy
IX. Bioeffects and safety
   A. General terms
      1. Hydrophone
      2. Calorimeter
      3. Thermocouple
      4. Dosimetry
      5. In vivo
      6. In vitro
   B. Acoustic output quantities
      1. Pressure
         a. Units
            (1) MPa
            (2) mmHg
         b. Peak pressures
      2. Power
         a. Units - mW
         b. Methods of determining power (radiation force, hydrophone)
      3. Intensity
         a. Units
            (1) mW/cm2
            (2) W/cm2
         b. Spatial and temporal considerations
         c. Average and peak intensities
         d. Methods of determining intensity
         e. Intensities
            (1) Spatial average-temporal average (SATA)
            (2) Spatial peak-temporal average (SPTA)
            (3) Spatial peak-pulse average (SPPA)
            (4) Spatial peak-temporal peak (SPTP)
            (5) Spatial average-temporal peak (SATP)
      4. Intensity and power values for operating modes
   C. Acoustic Output Labeling Standard
      1. Definition of thermal index
         a. Thermal index for soft tissue (TIS)
         b. Thermal index for bone (TIB)
         c. Thermal index for cranial bone (TIC)
      2. Definition of mechanical index (MI)
         a. Stable cavitation
         b. Transient cavitation
   D. Acoustic exposure
      1. Prudent use
      2. Methods to reduce acoustic exposure
      3. As low as reasonably achievable (ALARA)
   E. Primary mechanisms of biologic effect production
      1. Cavitation mechanisms
      2. Thermal mechanisms
   F. Experimental biologic effect studies
      1. Animal studies
      2. In vitro studies
      3. Epidemiologic studies
      4. Limitations
   G. Guidelines and Regulations
      1. Organizational statements
         a. Clinical safety
         b. Prudent use
         c. Bioeffects
         d. Epidemiology
         e. In vitro
         f. Safety in training and research
         g. Other
      2. National Electrical Manufacturers Association (NEMA)
      3. Food and Drug Administration (FDA)
   H. Electrical and mechanical hazard
      1. Patient susceptibility
      2. Operator susceptibility
 
MCCCD Governing Board Approval Date: June 23, 2020

All information published is subject to change without notice. Every effort has been made to ensure the accuracy of information presented, but based on the dynamic nature of the curricular process, course and program information is subject to change in order to reflect the most current information available.